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ABSTRACT
Neuromorphic computing, inspired by biological nervous systems, is gaining traction due to its advantages in latency, energy efficiency, and
algorithmic complexity compared to traditional artificial neural networks. This has spurred research into artificial synapses and neurons
that replicate brain functions. Spintronic-based technologies, particularly domain walls (DWs) and skyrmions (SKs), have shown remark-
able potential for brain-inspired computing, facilitating energy-efficient data storage and advancing beyond CMOS computing architectures.
Researchers have proposed various DWs- and Sks-based neuromorphic architectures for neurons and synapses. Leveraging magnetic multi-
layer structures, we propose a magnetic soliton that incorporates both DWs- and Sks-based magnetic tunnel junction (MTJ) device structures
to emulate leaky integrate-and-fire (LIF) characteristics. These characteristics are controlled by spin–orbit torque (SOT)-driven motion within
ferromagnetic thin films. By strategically placing the reading block and utilizing a combination of SOT and varying demagnetization energy,
we achieve modified LIF neuron characteristics in both DW and Sks MTJ devices. The co-action of soliton dynamics across the nanotrack
during the application of the current pulse, along with edge repulsion and variations in demagnetization energy, exploits LIF spiking behav-
ior. Theoretical and micromagnetic analyses reveal that the transitory tunable positions of Sks and the total magnetization of the free layer
for DWs mimic the membrane potential of biological neurons. Initial studies on multilayer DW-based LIF characteristics showed promise;
however, maintaining leaky behavior required a constant negative current, which is energy inefficient. By incorporating the non-volatile
properties of skyrmions and adding a chiral Dzyaloshinskii–Moriya interaction term, we further explored LIF dynamics, yielding encourag-
ing results. Our proposed neuron model, implemented in fully connected and convolutional layers, achieves over 95% classification accuracy
on the MNIST and Fashion MNIST datasets using a modified spike-based backpropagation method. With nanosecond latency, these spiking
neuron devices, when integrated with CMOS, pave the way for high-density, energy-efficient neuromorphic computing hardware.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0232395

I. INTRODUCTION

Quantum computing1 and neuromorphic computing2 are pio-
neering computing stages that emerged to address the limitations
of classical computing, but they do so in fundamentally different
ways. Quantum computing that is deeply rooted in the princi-
ples of quantum mechanics utilizes semiconductor/superconductor
qubits3 and phenomena such as superposition and entanglement
to perform computations that can vastly outperform classical com-
puters in specific tasks such as factoring large numbers or simu-
lating quantum systems. This field gained significant momentum

in the 1980s with the development of quantum algorithms by pio-
neers such as Feynman4 and Deutsch and Ekert.5 Pioneered in the
late 1980s, neuromorphic computing,2,6 brain-inspired extremely
energy efficient computing, which mimics the human brain com-
putation architecture, leverages spiking neural networks7–11 and
CMOS-based custom hardware like neuromorphic chips such as
IBM’s TrueNorth12 and Intel’s Loihi13 to efficiently process sensory
data and perform tasks related to perception,14 image classifica-
tion,15 pattern recognition,16–18 and machine learning.19 Both fields
are converging toward creating new computing paradigms that
aim to surpass traditional capabilities, with quantum computing
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promising exponential speed-ups for certain problems20 and neu-
romorphic computing offering unparalleled efficiency, robustness
for real-time processing, scalability, integration,21 and adaptive
tasks.7 In the past two decades, extensive research has been car-
ried out on various materials to develop structures for this pur-
pose. These include resistive random-access memory (RRAM),22

phase change materials (PCM),23,24 ferroelectric materials,25 and
spintronic devices26 specific to our case. Among these, spintronic
devices27–29 due to their ultra-fast dynamics and high endurance
toward the advancement of data storage devices and energy-efficient
computing architecture for much promising future are considered
the most promising for neuromorphic computing. The advantage
of considering spintronic devices is the feasibility of developing all
counterparts and transistor circuits (such as memory, logic, neurons,
and synapses). A multitude of spintronic technologies has made sig-
nificant progress in unconventional computing architectures such
as neuromorphic computing,16,30,31 probabilistic computing,32 and
reservoir computing paradigms.33 More recently, a branch of spin-
tronic that pursued studying magnetic solitons, such as domain
walls (DWs),34 vortices,35 skyrmion (Sks),36–38 and hofion,39 have
been extensively explored for next building blocks for data storage,40

memory applications, and processing units.37 Magnetic domain
walls (DWs) and skyrmions (Sks) are experimentally stabilized topo-
logical solitons in a ferromagnetic thin film system when different
magnetic energy terms, such as magnetic anisotropy, exchange
energy, stray field energy and Dzyaloshinskii–Moriya interaction
(DMI), compete with each other to attain the energy minima.41

The stabilization of stripe-like domain walls and skyrmions has
been observed in several noncentrosymmetric materials, as well as
in ferromagnetic heterostructures such as (Co/Pt)n (CoFeB/Pt)n
and (CoFeB/Ta)n.42,43 However, achieving precise control over the
dynamics, stability, and detection of these materials remains chal-
lenging due to their topological nature and the spin Hall effect. Since
the development of current-induced spin-transfer torque (STT)44

and spin–orbit torque (SOT),45 as well as the application of exter-
nal magnetic fields, solitons and their dynamics can be detected
through changes in resistance states46 known as magnetoresistance
or the topological Hall effect and by performing advanced compu-
tational measurements such as magnetic force microscopy (MFM),
small-angle neutron scattering (SANS), and Lorentz transmission
electron microscopy (LTEM). Magnetic domain walls (DWs) and
skyrmions (Sks) have been extensively explored for applications in
racetrack memory devices,47 MRAM, logic devices,48 non-volatile
circuits,49 spin-valve and magnetic tunnel junctions (MTJs),50 and
nano-oscillators.51 Compared to STT in MTJs, where the current
passes through the junction, SOT allows the magnetization of a
ferromagnet to be manipulated by current flowing transversely to
a ferromagnetic/nonmagnetic bilayer. SOT is stronger and faster
than STT-driven magnetization switching.52 The movement of the
domain wall creates variations in the net magnetization of the
MTJ-free layer, resulting in analog MTJ resistance switching char-
acterized by tunneling magnetoresistance (TMR).53 For instance,
(CoFeB/MgO) structures have demonstrated improved TMR ratios
(>200% at room temperature) while maintaining relatively low
read and write voltages (∼0.5 V), highlighting the promise of this
technology.54,55 Among spintronic devices, DW-MTJs leveraging
DW dynamics, which can be precisely manipulated by electri-
cal methods,56–59 are ideal candidates for applications in neural

networks for both linear weight updating and non-linear activa-
tion functions due to their intrinsic linear relationship between
junction magnetoresistance and programming stimuli.60 Similarly,
magnetic skyrmions, which are topologically stable magnetic tex-
tures61 found in bulk ferro-magnets62 or ultrathin ferromagnetic
films,63 are established by a chiral Dzyaloshinskii–Moriya interac-
tion (DMI) originating from strong spin–orbit coupling (SOC) and
broken inversion symmetry.64 Skyrmions are small,36 ultra-dense,
and require low driving current for their propagation compared to
domain walls.65 Recently, the generation and manipulation of sta-
ble magnetic skyrmions have been demonstrated experimentally at
room temperature,63,66,67 which further highlights the opportunity
for novel applications.

It is these remarkable properties that make them an ideal
candidate for racetrack memory devices,36 reservoir computing,68

and neuromorphic computing so they can accumulate, aggregate,
and fire in a probabilistic manner.46,69 Several proposals have been
made for domain wall and skyrmion-based spiking neural net-
works (SNNs) including skyrmion-based neuromorphic synaptic
devices,69 skyrmion-based artificial neurons,17 and skyrmion-based
leaky integrate-and-fire (LIF) neurons.70–72 Despite advancements,
controlling skyrmion motion in devices, managing its dynamics, and
achieving precise detection remains a setback because the current
density must be above the depinning level due to the skyrmion Hall
effect. In particular, neuromorphic computing technologies have
leveraged magnetic domain wall and skyrmion-based magnetic tun-
nel junction structures67,73 to mimic synaptic and neuron behaviors
in artificial neural network architectures.16,69 Domain wall-based
neuromorphic devices exhibit bio-plausible linear and symmetric
relationships between synaptic weights and pulses, demonstrating
their potential in synaptic functionality.74–78 However, considerable
challenges persist in terms of scalability, latency, and integration
with CMOS device structures. In this work, we provide more tunable
and versatile magnetic multilayer (MML) DW-MTJ and skyrmion-
MTJ-based spintronic devices, with optimized device geometries
showing leaky-integrate and fire (LIF) neuron characteristics and
their implementation into spike neural networks.

This paper is structured as follows: first in Sec. II, we provide
a detailed discussion of the micromagnetic simulated MML struc-
ture of the LIF neuron device. The multilayer structure that consists
of CoFeB/Ta exhibits DW and skyrmion motion in the presence of
SOT when analyzed individually. The use of highly stable topological
solitons, such as domain walls (DWs) and skyrmions (Sks), which
are ultra-small, is crucial for high-density integration and helps
address scalability issues. The MTJs perform the reading of DW
and skyrmion, showcasing DW/SK-MTJ-based devices. In addition,
employing MML and SOT dynamics can improve latency chal-
lenges, which stem from the time required for skyrmion nucleation,
movement, and detection, thereby enhancing the overall speed and
efficiency of the neuromorphic system. We have thoroughly ana-
lyzed the multilayer by spanning from 3 layers to 20 layers, the
effect of the dynamics and the LIF characteristics using micromag-
netic simulation mumax79 and Python libraries. Next, in Sec. III A,
we emphasize the developed neuron models and their LIF char-
acteristics, accompanied by a brief yet comprehensive analysis of
biological, artificial, and spiking neurons. Owing to the field, more
recently significant research has been spurred in the area of spiking
neural networks SNNs,7–11,15,80,81 which are considered to be having
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more biological plausibility. Spiking neural networks (SNNs) are
computational models that process information based on spikes
generated by spiking neurons. Unlike traditional artificial neural
networks that operate continuously, SNNs use discrete time events
or “spikes,” making them more energy-efficient and effective for
event-driven AI tasks on edge computing. This spatiotemporal data
encoding in SNNs enhances energy efficiency and performance for
real-time applications.82,83 The modeling of these neurons and the
derivation of the LIF equations are achieved through analysis of the
micromagnetic simulation results, leading to the formulation of the
mathematical equations for the LIF model. Finally, in Sec. IV, we
discuss the network architecture implemented for dataset classifica-
tion and present the obtained results. Furthermore, we integrate the
developed neuron models in the three-layer spiking neural network
(SNN) and convolutional CSNN framework to test these spiking
neuron models for the classification of the MNIST and FMNIST
datasets. In both architectures, the network achieves classification
accuracy above 96%. The research provides a new way to build
skyrmion-based SNN for complicated pattern recognition tasks,
which paves the way for the practical application of skyrmionics
and can be used as an alternative to traditional CMOS-based SNN
implementation. In addition, the LIF neuron latency is in ns, thus
when integrated with the CMOS, the proposed device structures
and associated systems exhibit a good future for energy-efficient
neuromorphic computing.

II. MAGNETIC DOMAIN WALL AND SKYRMION LIF
NEURON DEVICE STRUCTURE

One of the key reasons for opting for an MML device struc-
ture over a monolayer is the notable enhancement in stability against

thermal fluctuations and external perturbations when increasing
the number of layers from 1 to 15.84–87 This multilayer configura-
tion enables easier manipulation at smaller scales, offering improved
magnetic memory technologies’ scalability. To assess the feasibility
of multilayer spintronic devices’ functioning as leaky integrate-
and-fire (LIF) neurons in spiking neural networks, achieving both
scalability and enhanced output signals is essential.11,88–91

The fundamental principle can be illustrated by the simpli-
fied computational model shown in Fig. 1. Input spikes (U i) from
pre-neurons are modulated by weights (W i) stored in the intercon-
necting synapses. The outputs from all synapses are summed and
fed to the post-neuron through a non-linear activation function. In
response to this weighted current, a neuron’s membrane potential
(Umem) rises but decays slowly to a resting value until the next spike
is received. This behavior can be expressed as follows:92–95

dUmem

dt
= −

1
τmem

(Umem −Urest) +∑
j

δ(t − tj)Wj , (1)

where Umem is the membrane potential (i.e., the location of the
skyrmion), Urest is the resting potential, W j is the synaptic weight for
the jth input, τmem is the membrane time constant, and δ(t − tj) rep-
resents the spiking events occurring at time tj. When Umem crosses
a threshold (U th), the neuron emits a spike, transmitted to the
next layer of neurons. The term ∑j δ(t − tj)W j represents the sum
of input-weighted spikes from presynaptic neurons (integral term),
while (Umem −Urest) represents the leakage term.

The dynamics of multilayer domain walls (DWs) and
skyrmions (Sks) have been investigated to achieve higher velocities

FIG. 1. Schematic of multilayer domain wall/skyrmion-based MTJ device depicting the LIF neuron behavior (top right: LIF characteristic; bottom right: synaptic connections).
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and reduced sizes (multimedia available online), which is partic-
ularly important for the scalability of LIF neurons in a structure
measuring 256 × 64 nm2. The device consists of multilayer ferro-
magnetic nanotracks composed of (Ta/CoFeB)n, with two termi-
nals, T-1 (left end) and T-2 (right end), between which DWs or Sks
can move. The movement of the DWs/Sks is driven by spin-transfer
torque (STT) and spin–orbit torque (SOT) generated by lateral
charge currents. To nucleate (or write) the DWs or skyrmions, a cur-
rent pulse with an amplitude of 1 × 1011 A/m2 and a duration of 1 ns
is applied laterally to the device. To analyze the device’s frequency,
response pulses with varying time periods from 1.5 to 4 ns (in terms
of duty cycle) are utilized. In the presence of the current pulse,
DWs/Sks move from terminal T-1 to terminal T-2. The neuron’s
state variable, membrane potential (Umem), is represented by mag-
netization in the case of DWs and skyrmion position in the case of
Sks. This state is read using the tunneling magnetoresistance (TMR)
effect through a magnetic tunnel junction (MTJ) reading block. Both
scenarios will be individually analyzed in Subsections II A and II B
using micromagnetic simulations.

A. Domain wall LIF device structure
Once a domain wall is nucleated in the device as detailed in

Sec. II B and shown in Fig. 1, the current pulse is applied that gen-
erates STT and SOT that drives the DWs. The neuron’s membrane
potential (Umem) is represented by its magnetization, which emu-
lates the LIF behavior. As the DW moves through the free layer,
it experiences edge forces, and as it nears the T2 end, the increas-
ing demagnetization energy opposes its movement. By reading the

magnetization using the MTJ near the T2 end of the nanotrack,
magnetization integration in the presence of current is achieved, fol-
lowed by magnetization leakage in the absence of current. The MTJ
output terminal T3 is connected to the comparator for generating
the magnified output spikes that propagate to the next layer. After
each spike, a negative current pulse resets the membrane potential.
Once the membrane potential reaches a certain threshold voltage
(Uth), the comparator produces spikes and activates a resetting
MOSFET, which allows a reverse current pulse to flow. This pulse
drives the DW back to its starting position, resetting the membrane
potential to its resting state (Urest).

The simulated results are shown in Fig. 2. In Fig. 2(c), we
see how the demagnetization energy changes over time at differ-
ent writing current frequencies computed in terms of duty cycles.
We initiate by nucleating the domain wall on the left side at posi-
tion XDW = −200 nm. In this position, the thin film is magnetized
∼80% down (−z direction) and about 20% up (+z direction) with
the highest demagnetization energy (Edemag), depicted by the mag-
netization evolution shown in Fig. 2(a). As the domain wall moves
under the influence of competition between the repulsive force from
nanotrack edge and the driving force of input spike current and
reaches center, magnetization distribution of layer reaches to 50%
down (−z direction) and 50% down (+z direction) and the demag-
netization energy reduces to a minimum, as shown in Figs. 2(b) and
2(c). An explicit plot of demagnetization against variation of mag-
netization is shown in Fig. 2(b), where the minimum is observed at
the center when magnetization is Mz = 0. As the domain wall prop-
agates further away from the center to the right end of the device,
the change in demagnetization energy increases further, as shown

FIG. 2. Domain wall LIF results. (a) Magnetization profile of 5, 8, and 10 layer DW system; (b) ΔEdemag vs magnetization clearly depicts stable minima; (c) ΔEdemag evolves
with time; (d) resistance vs time, (e) MTJ output voltage (Vout) vs time for duty cycle pulses, and (f) magnetization evolution for duty cycle pulses.
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in Fig. 2(c), resisting the motion of DW. Figure 2(b) shows the evo-
lution of change in demagnetization energy with the domain wall
movement from T-1 to T-2. Figures 2(b) and 2(c) show the increas-
ing demagnetization for time/magnetization for four different input
pulse/spike frequencies.

We examine the variation in the multilayer energy profile,
particularly focusing on the demagnetization energy. Our findings
indicate that the application of current increases demagnetization
due to the spin–orbit torque (SOT) on the domain wall (DW) spins.
These spins are temporarily forced from a stable in-plane orientation
to a perpendicular direction. When the current is switched off, the
demagnetization relaxes; however, due to DW motion, the ratio of
+z/ − z domain spins changes. This results in a shift in the demag-
netization curve. Consequently, we observe (1) a transient volatile
memory effect due to SOT and (2) a stable non-volatile memory
effect caused by asymmetry in domain sizes.

The device’s performance varies with different current pulse
schemes. For a 50% duty cycle, current pulses are 1 ns ON, fol-
lowed by 1 ns OFF, corresponding to a 500 MHz input frequency.
For a 40% duty cycle, the ON pulse is 1 ns, followed by 1.5 ns
OFF (400 MHz). For a 33% duty cycle (1 ns ON/2 ns OFF), the
input frequency is 333 MHz, and for 50 MHz, the pulses are 1 ns
ON/3 ns OFF. The DW reaches its threshold position in 16 ns at
500 MHz, but it takes 27 ns at 333 MHz. The demagnetization energy
affects the DW’s motion. As the DW approaches terminal-T2, it
experiences an increasing demagnetization force. In the presence of
the SOT pulse, the DW moves to the right. When the current is
off, demagnetization forces cause the DW to move back, demon-
strating leaky integrate-and-fire (LIF) behavior. The SOT effect is
analogous to the integration of membrane potential in biological
neurons, while the DW’s relaxation mimics membrane potential
leakage [multimedia available online, mov(a)]. As explained above,
the DW motion alters the net magnetization of the magnetic tun-
nel junction (MTJ) free layer. In Fig. 2(f), the magnetization-time
characteristics clearly show leaky integrate-and-fire behavior. At
high frequencies (500 MHz), normalized magnetization (Mz/Ms)

reaches the threshold value of V th = 0.9 more quickly compared to
lower frequencies such as 333 MHz. In the case of lower frequencies,
such as the 33% duty cycle, the DW gets enough time to relax; thus,
magnetization leakage is increased, reflected in the blue curve. The
MTJ reads the magnetization change in terms of its tunnel magne-
toresistance. The MTJ measures these changes as variations in tunnel
magnetoresistance76,96 as

Rneuron = RAP
[1 − m̂ ⋅ m̂p]

2
+ RP

[1 + m̂ ⋅ m̂p]

2
. (2)

Here, RP/RAP represents the MTJ resistance in a parallel/anti-
parallel state. Figure 2(d) shows the neuron resistance switching for
2 devices with 5 and 8 CoFeB layers. We considered the TMR 200%
and RP/RAP = 200/600. If complete magnetization switching is con-
sidered, the Vout switches in the range (67–110 mV) are shown in
Fig. 2(e). The resistance shown in Fig. 2(d) increases from 250 to
590 Ω in a leaky integrated behavior. For the layer-5 case, we observe
fast DW switching, whereas, for the layer-8 case, the DW velocity is
reduced. Thus, the threshold voltage is achieved in 15 ns.

Adding more CoFeB layers increases leakage conductance due
to higher demagnetization energy, as indicated by the resistance

and voltage characteristics of the eight-layer MTJ neuron shown in
Figs. 2(a) and 2(d),97

Vout =
Rneuron

Rneuron + Rread
Vread,

⎧⎪⎪
⎨
⎪⎪⎩

Vout ≥ Vth : spike = 1,

else : spike = 0.
(3)

The MTJ neuron’s output (terminal T-3) is connected to a com-
parator with a threshold voltage (V th). As the MTJ neuron voltage
reaches this threshold voltage V th = 0.9, the comparator generates
the output spikes propagating to the next layer. During the firing,
the reset MOSFET is also switched, allowing a current to follow from
T-2 to T-1, thus driving the DW back to the initial position cor-
responding to the resetting of the neuron membrane voltage to its
rest voltage Vrest. The neuron’s leaky integrate-and-fire characteris-
tics are modeled by Eq. (10) and described in detail in Sec. III A. This
comprehensive analysis of the spintronic LIF neuron device illus-
trates its design, operation, and potential scalability, showcasing its
innovative capabilities for advanced computational applications.

B. Skyrmion LIF device structure
Magnetic skyrmions, among post-CMOS technologies, have

garnered significant interest due to their robustness, non-volatility,
nanoscale size, and low driving threshold current density,36,65 partic-
ularly when demonstrated at room temperature in multilayer ferro-
magnetic structures.63,66 Extensive research has been conducted on
their potential for low-power and highly dense neuromorphic com-
puting applications, such as artificial neurons and synapses.69,98,99 In
Ref. 69, the concept of a skyrmion-based artificial synapse device
for neuromorphic systems was initially proposed, mimicking the
function of a biological synapse. For practical realization, a sub-
sequent work introduced a novel artificial neuron model with a
threshold modulated by voltage. Furthermore, deep neural network
aspects of skyrmion-based devices, such as spiking neuron proces-
sors have been explored to enhance energy efficiency. Significant
progress has been made in studying skyrmion-based LIF neurons
in terms of device design and performance evaluation. For example,
Ref. 76 investigated skyrmion dynamics driven by current in nan-
otracks, proposing a new LIF neuron device. Using micromagnetic
simulation, Ref. 72 focused on the performance of skyrmion-based
LIF neuron dynamics by injecting spin current via the CIP scheme
in nanotracks, examining parameters such as size, velocity, energy,
and stability. Ref. 100 explored an AFM coupled bilayer struc-
ture to mitigate the parasitic Magnus force nature of skyrmion
in a track geometry depicting a skyrmion-based artificial neuron
and synapse characteristics. Biskyrmion artificial neuron behavior is
examined in Ref. 101, where biskyrmion splits into subskyrmion and
the interaction between them leads to the integration and leakage
characteristics.

Building on these achievements, we present a new method to
simulate skyrmion-based LIF neurons, incorporating mathemati-
cal modeling assisted with micromagnetic multilayer simulations
to validate device performance with the following device parameter
presented in Table I. We have simulated 6 to 15 layer device struc-
tures with dimensions 128 × 64 nm2 with thickness of 0.8 nm of
each layer to thoroughly investigate the LIF state variable, specifi-
cally membrane potential behavior. Confined within the geometry,
a skyrmion is nucleated at the left end of the device. Skyrmion moves
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TABLE I. Material parameters used in device simulation.71,72,114

Parameter Value

Grid Size 256, 64, Xa

Cell Size (nm) 2, 2, 0.8
Anisotropy, Ku (J/m2) 0.9 × 106

Saturation Magnetization, Ms (A/m) 0.8 × 106

Exchange Stiffness, A (J/m) 1.5 × 10−11

DMI, D (J/m2) 1.0 × 10−12

IEC, J (J/m2) 5 × 10−13

Damping Constant, αH 0.15
aX is the number of layers.

by applying the current pulses with an amplitude of 1 × 1011 A/m2

and a width of 1 ns from terminal T-1, and various frequency
responses were examined by tuning the period T from 1.5 to 4 ns.
The amount of skyrmion displacement is related to the magnitude
of an incoming charge current, which is modulated by the synap-
tic weight. The reading or detection process of skyrmion can be
achieved by sensing the change in resistance arising from the pres-
ence/absence of skyrmion at a specific location in the nanotrack, i.e.,
tunnel magnetoresistance (TMR) effect by using a spin valve-based
detector or an MTJ reading block attached to other end terminal
T-2, as shown in Fig. 1, detailed in Fig. 3, and a magnetization pro-
file is achieved as shown in Fig. 4. However, it is important to note
that unlike domain wall structures, which can be read by usual MTJ
P and AP states by measuring resistances, the average magnetiza-
tion texture of skyrmion does not correspond to an anti-parallel
(mz = −1) (or parallel) to the fixed layer(mz = 1); a smaller magne-
toresistance change is obtained. The obtained change in resistance is
directly proportional to the size (diameter ds) of the skyrmion and
is inversely proportional to the cross-sectional area of the MTJ. The
chances of getting a higher resistance change are better if the average
magnetization detection by MTJ is closer to mz = −1 (anti-parallel
to the fixed layer). In the presence of an excitatory current pulse,

mapping the motion of the skyrmion, i.e., skyrmion position Xsk,
which mimics the biological neuron state variable: membrane poten-
tial (Umem), characterizes the “integration” property of the LIF,
while leakage occurs in the absence of a current pulse. The amount of
skyrmion displacement correlates with the magnitude of the incom-
ing charge current, modulated by the synaptic weight, as shown in
Figs. 3(a) and 3(b). These combined processes define the complete
characteristics of a skyrmion-based leaky integrate-and-fire (LIF)
neuron. As the skyrmion progresses through the top layer from T-
1, it experiences edge forces via skyrmion–edge interaction. Near
the T-2 end, increasing demagnetization energy opposes its move-
ment. The simulated results are shown in Fig. 3. In Fig. 3(c), we see
how the demagnetization energy changes over time for a multilayer
ferromagnetic structure.

Skyrmion is nucleated at the left end near terminal T-1 at posi-
tion XSk = −200 nm. Under the influence of current, it moves toward
the terminal T-2, depicted by the magnetization evolution shown
in Fig. 3(d). Skyrmion moves under the influence of competition
between the repulsive force from nanotrack edge and the driving
force of input spike current and reaches center; the skyrmion posi-
tion plot is shown in Figs. 3(a) and 3(b). In the presence of the SOT
pulse, the Sks move to the right by overcoming the pinning and
hall forces. When the current is off, restoring forces cause the Sks
to move back, demonstrating leaky integrate-and-fire (LIF) behav-
ior. The dipolar interactions within the material can also create an
effective magnetic potential landscape. Skyrmions tend to settle in
regions where the magnetostatic energy is minimized. When the
driving current is removed, the skyrmion may move back to these
energetically favorable positions. The SOT effect is analogous to the
integration of membrane potential in biological neurons, while the
Sk’s relaxation mimics membrane potential leakage. In Fig. 3(b),
the position-time characteristics clearly show leaky integrate-and-
fire behavior. The characteristics are also examined by changing the
width of the device, which retains the LIF behavior of skyrmion
neuron, as shown in Figs. 3(g) and 3(h). After such successive inte-
gration and leakage, when the skyrmion reaches the output terminal
T-3 and the resistance change read by the sensing MTJ exceeds a
certain threshold (U th), the inverter attached to T-3 generates a

FIG. 3. Multilayer skyrmion-LIF device
structure three terminals T-1, T-2
(skyrmion track), and T-3 (detection unit)
as mentioned in the discussion and the
MTJ to read skyrmion.
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FIG. 4. Skyrmion LIF results. (a) Skyrmion position vs time for various layer device structure; (b) an enhanced Skyrmion position vs time plot for above 10 layers; (c) ΔEdemag
vs time for various layer structure; (d) magnetization evolution for various layer structure; (e) skyrmion speed vs time; (f) skyrmion velocity dependence on devices’ width;
(g) ΔEdemag dependence on width; and (h) Skyrmion position dependence on width.

magnified output spike transmitted to the next layer. Simultane-
ously, the skyrmion is reset by driving it back to the origin position
at terminal T-1. The resetting mechanism can be implemented in
various ways: (1) when the comparator spikes, a resetting MOSFET
triggers a negative current pulse in the opposite direction, driving
the skyrmion to its initial position (i.e., membrane potential is reset
to Urest); (2) if the membrane rest potential Urest = 0 is set by anni-
hilating the skyrmion at the nano track edge, which is achieved
by exceeding the current density to the skyrmion depinning cur-
rent density and then nucleating the skyrmion at the initial position
T-1, repeating the process. The nucleation, annihilation, and
dynamics of the skyrmion in the nanotrack are explored in detail
in Ref. 65 and briefly introduced in Sec. III B.

1. Memristive skyrmion-MTJ model
The memristive skyrmionic TMR model predicts the conduc-

tance and resistance in a magnetic tunnel junction (MTJ) influenced

by skyrmions, accounting for memristive behavior.102–104 The over-
all conductance G is derived as the integral of unit conductance g
over the MTJ area S, taking into account the angle θ between the
magnetizations of the two ferromagnetic layers. The conductance G
is expressed as

G = gPS −
Δg
2 ∫

(1 − cos θ) dS, (4)

where gP is the unit conductance for parallel magnetizations and Δg
is the difference in conductance between anti-parallel and parallel
states. This model can predict conductance based on micromagnetic
simulations. To create an experimental model without specific mag-
netization data, it is assumed that magnetic domain walls (DWs)
exist under dipolar coupling in the MTJ bilayer, influencing TMR.
The term,

Δg
2
(1 − cos θ) dS (5)
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is related to the skyrmion perimeter, enabling the expression,

G = gPS − πnsdsΔgwS, (6)

where ns is the skyrmion density, ds is the skyrmion diameter, and
w is the effective DW width. The resistance R is given by

R =
1
G
=

1
S

RAP
(1 − πnsdsw) +

S
RAAP
(πnsdsw)

(7)

and incorporates the resistance area products RAP and RAAP for par-
allel and anti-parallel states, respectively. This model helps under-
stand skyrmion effects on TMR in MTJs, with parameters obtainable
from TMR measurements and skyrmion imaging.

The role of temperature can be inferred from its impact on
magnetization, which we recognize is crucial in shaping domain
wall and skyrmion structures. Although temperature effects were
not directly included in this manuscript, we acknowledge that free
layer magnetization is sensitive to temperature, influencing both the
texture and dynamics of domain walls and skyrmions (multimedia
available online). Our results suggest that the core leaky-integrate
functionality remains stable under varying thermal conditions.
At higher temperatures, thermal fluctuations lead to observable
skyrmion behavior changes, as skyrmion radius is temperature-
dependent.105 To counteract magnetization drops caused by ele-
vated temperatures, using materials with higher exchange stiffness
A and increased anisotropy K could enhance thermal stability.

These adjustments provide more consistent magnetization dynam-
ics, ensuring more stable skyrmion behavior during the writing and
reading processes.

III. MODELLING MULTILAYER SPINTRONIC LEAKY
INTEGRATE AND FIRE (LIF) SPIKING NEURONS

Leaky integrate-and-fire (LIF) neurons and synapses are funda-
mental components of spiking neural networks, which can consist of
thousands or even millions of these units. To evaluate the feasibility
of integrating these fabricated and proposed neurons at the cir-
cuit level, we have developed a compact behavioral LIF model. This
model mimics the LIF characteristics through the output voltage
read by the MTJ, which corresponds to domain wall (DW) propaga-
tion in response to current pulses. These pulses generate spikes via a
comparator attached to the output terminal. The proposed model is
assessed by the micromagnetic simulations, effectively capturing the
LIF neuron characteristics.

A. Domain wall LIF neuron model
The proposed multilayer ferromagnetic DW-MTJ LIF neuron

device is shown in Fig. 1. The energetics and dynamics of this device
are detailed in Sec. III B. The correspondence between the DW-
MTJ LIF model and bioplausible LIF characteristics is as follows:
the net magnetization m of the free layer represents the LIF mem-
brane potential U(t), which is dependent on the DW position, as

FIG. 5. Multilayer ferromagnetic stack decomposition analysis of (a) domain wall and (b) skyrmion.
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shown in Fig. 5(a). As shown in magnetization evolution in Fig. 6(a),
when current is applied, the DW propagates from one end to the
other, continuously altering the free layer magnetization. In the
absence of current, the increased demagnetization energy due to the
DW shift in position, x, and boundary or edge repulsion creates a
pinning/depinning force (multimedia available online). This force
causes the DW to move back, reversing the magnetization and illus-
trating the leakage behavior of the LIF neuron. The propagation of
DW in the presence of input current characterizes the integration
[top three of Fig. 5(a)] and moving back in the absence (or reverse
current) characterizes the leakage [bottom of Fig. 5(a)] behavior of
the DW-LIF neuron. A video recording of DW’s movement in the
presence and absence of current pulse and their corresponding LIF
evolution is shared in the supplementary material file (multimedia
available online). A snapshot is shown in Fig. 7(b).

We obtain a differential equation corresponding to the evolu-
tion of net magnetization profile of DW. Since the net magnetization
m depends upon the DW position x. We model the velocity (dx/dt
∝ dm/dt) of the DW, which computes the magnetization time
evolution as

dm
dt
= α exp (−βm) + γI(t), (8)

which to the lowest order becomes

dm
dt
= −βm + α + γI(t), (9)

where m is the membrane potential, threshold = 5.8, α = −1 × 107,
β = −1.549, γ = 1.039 × 10−3, J = 1 × 1011, and dt = 2.3 × 10−9.
Using Eqs. (2) and (3), and with some algebraic modifications, the
magnetization dynamics is translated into Hall voltage and or MTJ
output neuron dynamics as

dUmem

dt
=

1
τ

Umem + α + γJ(t). (10)

The MTJ output voltage is further discretized, and the reset
condition is added to the model as

Umem(t + Δt) = Umem(t) + dUmem, (11)

dUmem = −Umem(t)
Δt
τ
+ {γI(t) + α}Δt, (12)

Ureset =
β

2.1
SUth. (13)

If the neuron generates a spike, indicated by an output spike
through the comparator (S = 1),

S =
⎧⎪⎪
⎨
⎪⎪⎩

1, if Umem > Uth,

0, if Umem < Uth,
(14)

a reset MOSFET transistor permits a reset current pulse.

FIG. 6. Magnetization evolution throughout the LIF process. (a) Domain wall and (b) skyrmion.

AIP Advances 14, 125119 (2024); doi: 10.1063/5.0232395 14, 125119-9

© Author(s) 2024

 19 February 2025 16:17:42

https://pubs.aip.org/aip/adv
https://doi.org/10.60893/figshare.adv.c.7562874


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 7. Micromganetic simulation results depicting (a) skyrmion LIF behavior and (b) domain wall LIF behavior.

Figure 8(a) shows the characteristics of the LIF model under
various current pulses. As shown, during the excitatory applied
square current pulse period, the voltage increases due to integra-
tion and decreases due to leakage during the inhibitory pulse period.
When the voltage reaches the threshold, the integration and leakage

nearly cancel each other, causing the neuron to spike and triggering
the reset mechanism. The dependency of the spike frequency of the
DW-MTJ LIF model on the input current is shown in Fig. 9, demon-
strating that as the current pulse increases, the spike frequency also
rises.

FIG. 8. Mathematical LIF Neuron model. (a) Domain wall (10) and (b) skyrmion (15).
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FIG. 9. Spike frequency response against current density.

B. Skyrmion LIF neuron model
Based on a similar idea and methodology, we have further

simulated a multilayer skyrmion-based spintronic device [shown in
Fig. 1(a) and simulated results shown in Fig. 5(b)] that emulates
as a leaky integrate-and-fire (LIF) neuron in a spiking neural net-
work by leveraging skyrmion motion for its functionality. The device
structure comprises similar stacked nanotracks with additional chi-
ral asymmetric DMI term, where the movement of skyrmions is
initiated at one end and progresses toward the other transferring
angular momentum adiabatically and non-adiabatically assisted by
STT and SOT that results in the motion of skyrmion. The reading of
the magnetization (membrane potential) is achieved using the tun-
neling magnetoresistance (TMR) effect via MTJ reading block. The
reading of the neuron state variable skyrmion position x, as shown in
Fig. 3(b), and magnetization in the case of the skyrmion LIF device
is carried out by the tunneling magneto-resistance TMR effect via an
MTJ reading block. As the skyrmion approaches the right end of the
device, the demagnetization energy increases [in Fig. 3(c)], oppos-
ing the skyrmion movement. We put the reading MTJ near the right
end of the nano tracks so that both state variables’ integration in the
presence of the current and leakage in the absence of the current is
realized. A comparator connected to the MTJ output generates the
magnified output spikes that propagate to the next layer. Ideally, the
neuron should reset itself by moving the skyrmion to the left side of
the nano track without any external stimulus, but it takes significant
amount of time to realize the resetting of the membrane potential.
To achieve this, a resetting current pulse is applied in the −x direc-
tion once the membrane potential reaches Uth and the neuron fires.
This activates the resetting MOSFET, returning the skyrmion to its
initial position and resetting the membrane potential to Urest on the
left side of the nanotrack.

Thus, skyrmion’s movement, influenced by STT and demag-
netization forces, resembles the integration and leakage of mem-
brane potential in biological neurons. Input current pulses drive
the skyrmion, with subsequent reset pulses driving it back to its
initial position upon reaching the threshold voltage. Overall, the
device functions as a scalable LIF neuron, offering increased out-
put signal and frequency response, essential for spiking neural

networks. The skyrmion-based neuron model’s response to input
current and its neuronal behavior is shown in Fig. 7(a). A video
recording of skyrmion’s movement in the presence and absence of
current pulse and their corresponding LIF evolution is shared in
the supplementary material file [multimedia available online, mov
(b)], a snapshot of which is shown in Fig. 7(a). We modeled the
skyrmion position x as it moved across the nanotrack and obtained
a differential equation by analyzing its velocity in the track,

dx
dt
= k1x(t)2

+ k2x(t) + γI(t), (15)

where x imitates the membrane potential, threshold xth = 20
×10−9, k1 = −0.0026, k2 = −0.0568, γ = 5.7529 × 104, dt = 6 × 10−11,
I(t) = 1 × 10−4. In generic LIF neuronal equation, it can be written
as

τ
dUmem

dt
= τ ⋅ k1U2

mem −
1
τ

Umem + R ⋅ I(t), (16)

where the decay term is k2 ⋅ X = −V
τ thus k2 =

1
τ , the input current

term γ ⋅ I(t) = R ⋅ I(t) thus γ = R and a quadratic non-linear term.
The MTJ output voltage is discretized, and the reset condition

is added to the model as

Umem(t + 1) = Umem(t) + dUmem, (17)

dUmem = Δt(k1ΔU2
mem + k2Umem + k3I(t)). (18)

If the neuron generates a spike, indicated by an output spike
through the comparator (S = 1),

S =
⎧⎪⎪
⎨
⎪⎪⎩

1, if Umem > Uth,

0, if Umem < Uth,
(19)

a reset MOSFET transistor permits a reset current pulse in
−x direction that drives the skyrmion back to its original position.

Figure 8(b) shows the characteristics of the LIF model under
various current pulse schemes. As shown, during the excitatory
applied square current pulse period, the voltage increases due to
integration and decreases due to leakage during the inhibitory pulse
period. When the voltage reaches the threshold, the integration and
leakage nearly cancel each other, causing the neuron to spike and
triggering the reset mechanism.

IV. SNN IMPLEMENTATION
Furthermore, we implemented the proposed neuron models,

both the domain wall and skyrmion in our spike neural network
architecture based on snnTorch framework,106 consisting of both
the fully connected (FCSNN) layers as well as convoluted (CSNN)
layers, with LIF neurons embedded at each node. We tested the per-
formance of each model on classifying the MNIST handwritten digit
dataset and Fashion F-MNIST classification using a modified spike-
based backpropagation training approach.107 For both the DW and
Skyrmion LIF, the neural network architectures and training algo-
rithms implemented were mostly similar as detailed. The FCSNN
comprises three layers: 784 input neurons, 1000 neurons in the hid-
den layer, and 10 neurons in the output layer, as shown in Fig. 10(a).
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FIG. 10. Neural network architectures. (a) Three-layer fully connected spiking neural network (FC-SNN); (b) convolutional spiking neural network (CSNN) architecture-based
on skyrmion neuron models.

In contrast, the CSNN includes two convolutional layers [Conv1
(1, 32, kernel = 5, padding = 5) and Conv2 (32, 64, kernel = 5,
padding = 5), each followed by a MaxPool2d (kernel = 2, stride = 2)
Pooling layers and the DW/Skyrmion LIF neuron are shown in
Fig. 10(b)].

At t = 0, the membrane potential U(t) represented by its vari-
ables τ, γ, β, α, U, X, dt, and the threshold values U th initializes to
its rest value. During each time step, the input flattens to main-
tain correct dimensional integrity. It then passes to the layers, where
input spikes increase the membrane potential and generate spikes
on reaching the threshold. We recorded these dynamics in the spike
and membrane tensors across all layers, repeating this process for
60 steps. The system then returns the spike and membrane record-
ings to the network and CUDA device. As with the fully connected
network, the input current and membrane potential pass through

the network, and their dynamics are recorded over time. The
training algorithm spans ten epochs at best for appending train-
ing and test loss assisted by membrane potential (FCSNN) and
spike count (CSNN) calculated at each step using cross-entropy
loss function. We have used the backpropagation algorithm [net-
work architecture is shown in Fig. 11(a)] to train the network
whose main aim is to reduce the error (loss) in a neural net-
work. It does this by calculating the gradient of the loss with
respect to each trainable parameter in the network. Using the
chain rule involves working backward from the final layer to each
weight,

∂L
∂W
=
∂L
∂S

∂S
∂U
°
{0,∞}

∂U
∂I

∂I
∂W

.

FIG. 11. (a) Backpropagation through
time. (b) The dead neuron problem: the
analytical solution that results in a gra-
dient that does not enable learning. (c)
Surrogate gradients: the spike genera-
tion function is approximated to a contin-
uous function during the backward pass
(“← ” indicates function substitution),
inspired from Ref. 106.
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FIG. 12. Classification accuracy and loss on MNIST and FMNIST datatsets of (a) skyrmion LIF on FC-SNN and CSNN network; (b) domain wall LIF on FC-SNN and CSNN
network.

FIG. 13. SNN results. (a) Total measured spike count for each label (0–9), (b) confusion matrix plot for MNIST dataset, (c) heatmap of spike activity of final layer neuron no.
2 (Actual) when target is 2 constitutes the ACC 99.12%; (d) spike activity of final layer neuron no. (Actual) 2 when target is not 2 constitutes the ACC 0.01%.
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ALGORITHM 1. Network architecture.

1: Parameters:
2: num_inputs← 784
3: num_hidden← 1000
4: num_outputs← 10
5: num_steps← 25
6: Spiking Neuron Model:
7: SKNeuron :
8: Parameters : isyn, threshold, p1, p2, γ, dt
9: Forward pass :
10: dv ← (p1 ⋅mem2

+ p2 ⋅mem + γ ⋅ isyn) ⋅ dt
11: Spike : spk← Heaviside(mem − threshold)
12: Reset : mem← mem + dv
13: mem← where(spk == 1, mem − threshold, mem)
14: Network Class:
15: Net :
16: Layers : fc1(num_inputs, num_hidden), lif1(),
fc2(num_hidden, num_outputs), lif2()
17: Forward pass :
18: Initialize: mem1, mem2
19: for step ∈ num_steps do
20: cur1← fc1(x), spk1, mem1← lif 1(cur1, mem1)
21: cur2← fc2(spk1), spk2, mem2← lif 2(cur2, mem2)
22: end for
23: Return: stack(spk2), stack(mem2)

ALGORITHM 2. Training procedure.

1: Initialize Network:
2: net← Net().to(device)
3: Loss and Optimizer:
4: loss← CrossEntropyLoss()
5: optimizer← Adam(net.parameters(), lr = 0.005)
6: Training Loop:
7: for epoch ∈ range(num_epochs) do
8: for data, targets ∈ train_loader do
9: data, targets← data.to(device), targets.to(device)
10: spk_rec, mem_rec← net(data.view(batch_size,−1))
11: loss_val← ∑num_steps

step loss(mem_rec[step], targets)
12: optimizer.zero_grad()
13: loss_val.backward()
14: optimizer.step()
15: end for
16: end for

Once these gradients are computed, they are used to adjust the
weights to minimize the error. However, in training spike neural net-
works (SNNs), one major problem occurs when the gradient is zero,
which means that the weights will not be updated since the spikes
are in the form of 0s and 1s so the derivative turns out to be non-
differentiable in the term ∂S/∂U ∈ {0,∞}. This issue, known as
the “dead neuron” problem, arises when neurons fail to fire, making
their gradients zero and preventing them from learning,

S =
⎧⎪⎪
⎨
⎪⎪⎩

1, U > Uth,

0, U < Uth.
(20)

To address the above-mentioned issues, the surrogate gradient
approach is utilized by substituting non-differentiable spike func-
tions with continuous functions during the backward pass while
keeping the Heaviside function during the forward pass, as shown
in Fig. 11(b). For example, instead of using the Heaviside step func-
tion (which is non-differentiable) Eqn. (20), a continuous function S̃
such as the sigmoid/fastsigmoid/arctan function is used. This allows
the error to propagate even if a neuron does not fire, ensuring that all
neurons, including inactive ones, receive appropriate gradient sig-
nals during training. However, weight updates still depend on actual
spiking events to ensure meaningful learning,

S ∼
1
π

arctan (πU), (21)

∂S
∂U
=

1
π

1
1 + (πU)2 . (22)

For our training network, the backpropagation through time
(BPTT) algorithm was assisted by the sigmoid function in Eq. (20)
that helps compute gradients over time, and an optimizer such as
Adam (with a learning rate of 0.0009) is used to update the weights
and improve accuracy. Following training, we tested our devices
and models with test data, analyzing accuracy with increasing iter-
ations and epochs, and compared results with the snntorch’s ideal
LIF neuron snnLeaky as a benchmark. The proposed neuron mod-
els achieved results comparable with the ideal SnnLeaky neuron
model. Both the DW-based and Skyrmion-based SNN architec-
tures (FCSNN and CSNN) have achieved over 90% accuracy on
MNIST and FMNIST datasets shown in Fig. 12, demonstrating the
effectiveness of these methods. The spike activity of each neuron
is traced individually [Fig. 13(a)], which is shown in Fig. 13(c),
where neuron No. 2 spikes all the time when target is set 2 while
spikes rarely [Fig. 13(d)] when spike is not 2. This correlation
between the actual and predicted digits is depicted using a confusion
matrix in Fig. 13(c). These accuracy results, when added to the low
latency neuron metrics and low writing energy requirements, under-
score the viability of the proposed neuron models for large-scale
energy-efficient neuromorphic computing applications.

A. SNN algorithms
The full algorithm developed for the SNN dataset classifica-

tion is presented in the supplementary material file. However, the
network and training algorithms are as follows (Algorithm 1 and 2).

V. CONCLUSION
In this paper, we propose spintronic domain wall and skyrmion

based multilayer ferromagnetic LIFneuron device concepts, along
with their mathematical models, and demonstrate their integration
into bio-realistic, energy-efficient spiking neural networks (SNNs).
LIF behavior is achieved through a combination of spin-transfer
torque (STT), spin–orbit torque (SOT), various energy interactions,
and input current pulse schemes. The advantages of the proposed
device concept include its multilayer ferromagnetic structure, which
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is highly resilient and stable, allowing domain walls and skyrmions
to be hosted at ultra-small sizes, thereby enabling high-density inte-
gration, scalability, and efficient latency. The integration and leak
functionality of the neuron is achieved by modulating the demag-
netizing energy. We demonstrate the spintronic mem-transistor-
like behavior, which provides dual tunability and versatility in
device operation. Using micromagnetic simulations, we illustrate
the device’s functionality at low spike latency and its LIF charac-
teristics for applied input pulses. We integrated the neuron models
into fully connected and convolutional SNN architectures using a
modified spike-based backpropagation technique to perform image
recognition tasks. We achieved an accuracy of 98% when classify-
ing the MNIST handwritten digits dataset and 95% when classifying
the FMNIST dataset. With such strong metrics, the proposed neu-
rons and SNN schemes show excellent prospects for spiking neural
network applications and neuromorphic computing in general.
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APPENDIX A: BIOLOGICAL, ARTIFICIAL AND SPIKING
NEURON

Neurons, whether biological, artificial, or spiking, are the fun-
damental units of computation in their respective systems, each
with distinct principles, characteristics, and efficiencies. Biological
neurons operate based on electrochemical processes: they receive
inputs through dendrites, process them in the soma, and transmit
outputs via action potentials along the axon to synapses shown in
Fig. 14(a). The biorealistic model Hodgkin–Huxley model91,108,109

describes the ionic currents through the neuron membrane using
differential equations, capturing the dynamics of voltage-gated ion
channels (e.g.,

I = Cm
dUmem

dt
+ INa + IK + IL,

where I is the total membrane current, Cm is the membrane capac-
itance, and Umem is the membrane potential). It exhibits firing at a

constant rate for a constant input, called tonic spiking and allows for
spike-time dependent plasticity (STDP), as shown in Fig. 14(b).109

Artificial neurons, on the other hand, abstract this pro-
cess through mathematical models in artificial neural networks
(ANNs).110 These neurons compute a weighted sum of inputs, pass it
through an activation function f (e.g., sigmoid, ReLU), and produce
an output,

y = f (∑wixi + b),

where wi are the weights, xi are the inputs, and b is the bias.
Spiking neurons, akin to the biological counterparts, com-

municate via discrete spikes rather than continuous signals. The
dynamics of spiking neurons can be described by models such as the
leaky integrate-and-fire (LIF) model, where the membrane potential
Umem(t) evolves according93 to

τm
dUmem(t)

dt
= −Umem(t) + RI(t),

with τm being the membrane time constant and R being the resis-
tance. When Umem(t) reaches a threshold, a spike is emitted, and
Umem(t) is reset. Biological neurons are highly efficient in energy
consumption and adaptability but are slower compared to artifi-
cial neurons, which excel in speed and scalability but consume
significant power and lack biological complexity. Spiking neurons
offer a middle ground, mimicking biological neurons’ efficiency
and temporal dynamics while maintaining computational advan-
tages over traditional ANNs. Biological neurons leverage chemical
gradients for low-power operation, artificial neurons benefit from
parallelized hardware implementations, and spiking neurons uti-
lize sparse, event-driven processing, optimizing power and com-
putational resources in neuromorphic hardware. Both ANNs and
spiking neural networks (SNNs) can model similar network topolo-
gies, but they differ in neuron models: ANNs use artificial neurons
with weighted sum inputs and non-linear functions such as sig-
moid or ReLU, whereas SNNs use spiking neurons that affect a
neuron’s membrane potential, Umem(t). Neuromorphic engineer-
ing111 aims to replicate the brain’s computational principles to
reduce energy costs in AI systems, comprising three main compo-
nents: neuromorphic sensors inspired by biological sensors, neuro-
morphic algorithms (SNNs), and specialized hardware for power-
efficient execution. These systems leverage sparse activations and
low-precision parameters to accelerate neuromorphic workloads,
resulting in significant power and latency gains.112 By emulating
the brain’s efficiency, neuromorphic systems aim to bridge the gap
between current and future intelligent systems. The complexities
of training brain-inspired neuromorphic algorithms underscore the
importance of extracting learning algorithms from the brain to
improve AI. While SNNs can be optimized with existing tools, the
unique nature of biologically inspired neural networks warrants
further exploration. Two fundamental dynamics constituting the
SNN are neurons and synapses. Pre-neuron transmits voltage spikes
∑ f δ(t − tf ) to post-neuron through synapses. The synapses model
the generated spikes as

τpost
dIpost

dt
= −Ipost +w∑

f
δ(t − tf ),
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FIG. 14. (a) Schematic of biological neuron, synaptic connections (dotted encircled), and ion channels (dotted square box); (b) mathematical response of the Huxley–Hodgkin
(H–H) neuron model.

where Ipost is the synaptic current modulated by synaptic conduc-
tance (weight) w over spikes and decays with time constant τpost .
Once post-neuron receives the synaptic current, its dynamics are
governed by

τ
dUmem

dt
= −Umem + Rmem∑ Ipost,i,

where Umem characterizes the membrane potential, Rmem is mem-
brane resistance, Ipost,i is the post-synaptic current input from the ith
neuron, and τ is the membrane time constant. When the membrane
potential reaches a certain threshold, U th, the neuron emits a spike.
Inputs to neurons are typically short bursts of electrical activity
(spikes). Because these input spikes rarely arrive simultaneously, the
membrane potential exhibits temporal dynamics, sustaining it over
time. This concept was first quantified in 1907 by Louis Lapicque,
who likened a spiking neuron to a low-pass filter circuit composed
of a resistor (R) and a capacitor (C), which was later named the leaky
integrate-and-fire (LIF) neuron model.

To integrate this time-dependent behavior into a sequence-
based neural network, the forward Euler method is used to
approximate the neuron’s membrane potential, Umem[t],

Umem[t] = βUmem[t − 1] + (1 − β)Iin[t]. (A1)

Here, time is discretized, and β = e−1/τ represents the decay
rate or inverse time constant of Umem[t]. In deep learning, input
weighting factors are learnable parameters, so the coefficient of input
current (1 − β) can be incorporated into a learnable weight W. This
simplifies the input current to Iin[t] =WX[t], isolating the effect of
β on the input X[t]. Including the effects of spiking and membrane
potential reset, the model becomes

Umem[t] = βUmem[t − 1] +WX[t] − Sout[t − 1]Uth, (A2)

where Sout[t] ∈ {0, 1} is the output spike. If a spike is generated (i.e.,
Sout = 1), the reset term subtracts θ from the membrane potential.

Otherwise, the reset term has no effect. A spike is generated if the
membrane potential exceeds the threshold,

Sout[t] =
⎧⎪⎪
⎨
⎪⎪⎩

1, if Umem[t] > Uth,

0, otherwise.
(A3)

The ideal leaky integrate-and-fire (LIF) neuron model is imple-
mented in the snnTorch library106,113 as Snn.Leaky. This imple-
mentation captures the described dynamics, enabling the simulation
and analysis of SNNs within the framework.

Now comes the part when input data are being encoded and
sent to the network. For SNNs, the input data do not have to be
encoded into spikes; continuous values as input data are also accept-
able. For example, an “image” is “static data” that can be treated as
a direct current (DC) input with the same features passed to the
input layer of the SNN at every time step. There are three main
mechanisms to encode the input data.

1. Rate coding converts input intensity into a firing rate or spike
count and chooses the output neuron with the highest firing
rate, or spike count, as the predicted class.

2. Latency (or temporal) coding converts input intensity to a
spike time and chooses the output neuron that fires first as the
predicted class.

3. Delta modulation converts a temporal change of input inten-
sity into spikes, and otherwise remains silent and applies the
above-mentioned coding schemes (typically a rate code) with
multiple neurons per class.

APPENDIX B: SOLITON DYNAMICS
AND MICROMAGNETIC SIMULATIONS

Numerous literary studies have extensively delved into funda-
mental elementary processes, such as nucleation, annihilation, read-
ing, writing, manipulation, and dynamics, concerning skyrmions
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and domain walls across various nanostructures.36,65 In this discus-
sion, we will focus on the essential aspects relevant to our topic
without delving into exhaustive details. The nucleation of solitons,
including both domain walls (DWs) and skyrmions, can be achieved
by applying a spin current (“write current” between T-1 and T-2,
5–10 mA) in the proposed device structure. Once nucleated, the DW
or skyrmion can be displaced by a charge current passing through
the heavy metal (HM). The motion of these solitons can be con-
trolled by a current either in-plane (CIP) or perpendicular to the
plane (CPP). The dynamics of skyrmion CIP and CPP have been
extensively studied in the review paper.65

The dynamics of skyrmions can be described using the Thiele
equation for the velocity vector v = (vx, vy),

G × v − α[D ]v +F +F
ext
= 0, (B1)

with

G = −
MstFM

γ ∬ {(
∂m
∂x
×
∂m
∂y
) ⋅m}dx dy,

[D ] = [
DxxDxy

DyxDyy
], Dij =

MstFM

γ ∬ {
∂m
∂i
⋅
∂m
∂j
}dx dy,

Fx,y =
μ0MstFM

γ ∬ {(m × τ) ⋅
∂m
∂x, y

}dx dy,

F
ext
= −∫

δU

δm
⋅
∂m
∂x, y

dx dy = −
∂U

∂x, y
= −∇U (r),

(B2)

where G = Gẑ is the gyrovector, D is the dissipation matrix, and
F = (Fx, Fy) represents the force on the skyrmion magnetization
due to the spin–orbit torque (SOT) τ.

SOT induces magnetization dynamics in ferromagnetic (FM)
layers through a vertical pure spin-current js injected from other
layers, typically HM layers. This interaction is described by the
modified Landau–Lifshitz–Gilbert (LLG) equation,

dm
dt
= −γμ0m ×Heff + α(m ×

dm
dt
)

− γ
h̵
2e

j
μ0MstFM

θeffm × (m × ŝ), (B3)

where γ is the gyromagnetic ratio, Heff is the effective field, and α
is the Gilbert damping parameter. Micromagnetic simulations using
MuMax79 incorporate this equation, with SOT added as modified
spin-transfer torque (STT),

τSOT = −
γ

1 + α2 aJ[(1 + ξα)m × (m × p) + (ξ − α)(m × p)], (B4)

aJ = ∣
h̵

2Mseμ0

θSHj
d
∣, p = sign (θSH)j × n, (B5)

where θSH is the spin Hall coefficient, j is the current density, and d
is the free layer thickness. The resistance of the skyrmion magnetic
tunnel junction (MTJ) synapse is computed using the magnetization
profile of the free layer,97

Rsyn =
Vsyn

Isyn
. (B6)

The effective magnetic field Heff is defined as

Heff =
−1

μ0Ms

δE
δm

. (B7)

The total magnetic energy E(m) of the free layer includes
exchange, uniaxial anisotropy, Zeeman energy, demagnetization,
and DMI energies,36,38,115

E(m) = ∫
V
[A(∇m)2

− μ0m ⋅Hext −
μ0

2
m ⋅Hd

− Ku(û ⋅m)2
+ εDM]dv,

where A is the exchange stiffness, μ0 is the permeability, Ku is the
anisotropy energy density, Hd is the demagnetization field, and Hext
is the external field. The DMI energy density εDM is computed as

εDM = D[mz(∇ ⋅m) − (m ⋅ ∇) ⋅m]. (B8)

Solving the Euler equation yields the domain wall width (δ)
and domain wall energy with DMI (σ),116

δ = πΔ = π
√

A/Keff, (B9)

σ = 4
√

AKeff ∓ πD, (B10)

where Δ = A/Keff is the Bloch wall width parameter.
Magnetic skyrmions are characterized by their topological or

skyrmion number Q,

Q =
1

4π ∬
m ⋅ (

∂m
∂x
×
∂m
∂y
) dx dy. (B11)

The spins projected on the XY-plane and the normalized mag-
netization vector m can be expressed using the radial function θ,
vorticity Qv , and helicity Qh,

m(r) = [sin (θ) cos (Qvφ +Qh), sin (θ) sin (Qvφ +Qh), cos (θ)].
(B12)

The vorticity number is related to the skyrmion number as
follows:

Q =
Qv

2
[ lim

r→∞
cos (θ(r)) − cos (θ(0))]. (B13)

Skyrmions in motion are subject to the Magnus force and input
spike currents from presynaptic neurons, which can lead to edge
annihilation if the current density exceeds a critical threshold. The
skyrmion Hall effect limits the applicability of skyrmion motion.
Reduction in skyrmion size along the edge can cause decelera-
tion and potential temperature-activated annihilation. Multilayer
skyrmions, as discussed in Ref. 87, provide enhanced stability against
thermal fluctuations and external perturbations compared to single-
layer skyrmions. They can be manipulated at smaller sizes, offering
better scalability for magnetic memory technologies. The motion of
multilayer skyrmions has been studied for achieving higher veloc-
ities and reduced sizes in a structure of dimensions 256 × 64 nm2.
Upon continuous input current, skyrmions reach a threshold and
fire an output signal after a certain time (e.g., t = 12 ns).
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